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a b s t r a c t

In this short note, we present a new technique to accelerate the convergence of a FFT-based
solver for numerical homogenization of complex periodic media proposed by Moulinec and
Suquet [1]. The approach proceeds from discretization of the governing integral equation
by the trigonometric collocation method due to Vainikko [2], to give a linear system which
can be efficiently solved by conjugate gradient methods. Computational experiments con-
firm robustness of the algorithm with respect to its internal parameters and demonstrate
significant increase of the convergence rate for problems with high-contrast coefficients at
a low overhead per iteration.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A majority of computational homogenization algorithms rely on the solution of the unit cell problem, which concerns the
determination of local fields in a representative sample of a heterogeneous material under periodic boundary conditions.
Currently, the most efficient numerical solvers of this problem are based on discretization of integral equations. In the case
of particulate composites with smooth bounded inclusions embedded in a matrix phase, the problem can be reduced to
internal interfaces and solved with remarkable accuracy and efficiency by the fast multipole method, see [3, and references
therein]. An alternative method has been proposed by Moulinec and Suquet [1] to treat problems with general microstruc-
tures supplied in the form of digital images. The algorithm is based on the Neumann series expansion of the inverse to an
operator arising in the associated Lippmann–Schwinger equation and exploits the Fast Fourier Transform (FFT) to evaluate
the action of the operator efficiently.

The major disadvantage of the FFT-based method consists in its poor convergence for composites exhibiting large jumps
in material coefficients. To overcome this difficulty, Eyre and Milton proposed in [4] an accelerated scheme derived from a
modified integral equation treated by means of the series expansion approach. In addition, Michel et al. [5] introduced an
equivalent saddle-point formulation solved by the Augmented Lagrangian method. As clearly demonstrated in a numerical
study by Moulinec and Suquet [6], both methods converge considerably faster than the original variant; the number of iter-
ations is proportional to the square root of the phase contrast instead of the linear increase for the basic scheme. However,
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this comes at the expense of increased computational cost per iteration and the sensitivity of the Augmented Lagrangian
algorithm to the setting of its internal parameters.

In this short note, we introduce yet another approach to improve the convergence of the original FFT-based scheme [1]
based on the trigonometric collocation method [7] and its application to the Helmholtz equation as introduced by Vainikko
[2]. We observe that the discretization results in a system of linear equations with a structured dense matrix, for which a
matrix–vector product can be computed efficiently using FFT (cf. Section 2). It is then natural to treat the resulting system
by standard iterative solvers, such as the Krylov subspace methods, instead of the series expansion technique. In Section 3,
the potential of such approach is demonstrated by means of a numerical study comparing the performance of the original
scheme and the conjugate- and biconjugate-gradient methods for two-dimensional scalar electrostatics.
2. Methodology

In this section, we briefly summarize the essential steps of the trigonometric collocation-based solution to the unit cell
problem by adapting the original exposition of Vainikko [2] to the setting of electrical conduction in periodic composites. In
what follows, a, a and A denote scalar, vector and second-order tensor quantities with Greek subscripts used when referring
to the corresponding components, e.g. Aab. Matrices are denoted by a serif font (e.g. A) and a multi-index notation is em-
ployed, in which RN with N = (N1, . . . ,Nd) represents RN1�����Nd and Ak stands for the (k1, . . . ,kd)-th element of the matrix
A 2 RN .
2.1. Problem setting

We consider a composite material represented by a periodic unit cell Y ¼
Qd

a¼1ð�Ya;YaÞ � Rd. In the context of linear
electrostatics, the associated unit cell problem reads as
$� eðxÞ ¼ 0; $ � jðxÞ ¼ 0; jðxÞ ¼ LðxÞ � eðxÞ; x 2 Y ð1Þ
where e is a Y-periodic vectorial electric field, j denotes the corresponding vector of electric current and L is a second-order
positive-definite tensor of electric conductivity. In addition, the field e is subject to a constraint
e0 ¼ 1
jYj

Z
Y

eðxÞ dx; ð2Þ
where e0 denotes a prescribed macroscopic electric field and jYj represents the d-dimensional measure of Y.
Next, we introduce a homogeneous reference medium with constant conductivity L0, leading to a decomposition of the

electric current field in the form
jðxÞ ¼ L0 � eðxÞ þ dLðxÞ � eðxÞ; dLðxÞ ¼ LðxÞ � L0: ð3Þ
The original problem (1)–(2) is then equivalent to the periodic Lippmann–Schwinger integral equation, formally written as
eðxÞ þ
Z
Y

C0ðx� yÞ � ðdLðyÞ � eðyÞÞ dy ¼ e0; x 2 Y; ð4Þ
where the C0 operator is derived from the Green’s function of the problem (1)–(2) with L(x) = L0 and e0 = 0. Making use of the
convolution theorem, Eq. (4) attains a local form in the Fourier space:
êðkÞ ¼ jYj
1
2e0; k ¼ 0;

�bC0ðkÞ � dðdL � eÞðkÞ; k 2 Zd n f0g;

(
ð5Þ
where f̂ ðkÞ denotes the Fourier coefficient of f(x) for the kth frequency given by
f̂ ðkÞ ¼
Z
Y

f ðxÞu�kðxÞ dx; ukðxÞ ¼ jYj
�1

2 exp ip
Xd

a¼1

xaka

Ya

 !
; ð6Þ
”i” is the imaginary unit and
bC0ðkÞ ¼
0; k ¼ 0;

k�k
k�L0 �k ; k 2 Zd n f0g;

(
ð7Þ
Here, we refer to [4,8] for additional details.



J. Zeman et al. / Journal of Computational Physics 229 (2010) 8065–8071 8067
2.2. Discretization via trigonometric collocation

Numerical solution of the Lippmann–Schwinger equation is based on a discretization of a unit cell Y into a regular peri-
odic grid with N1 � � � � � Nd nodal points and grid spacings h = (2Y1/N1, . . . ,2Yd/Nd). The searched field e in (4) is approxi-
mated by a trigonometric polynomial eN in the form (cf. [2])
eðxÞ � eNðxÞ ¼
X
k2ZN

êðkÞukðxÞ; x 2 Y; ð8Þ
where N ¼ ðN1; . . . ;NdÞ; ê designates the Fourier coefficients defined in (6) and
ZN ¼ k 2 Zd : �Na

2
< ka 6

Na

2
;a ¼ 1; . . . ;d

� �
: ð9Þ
We recall, e.g. from [2], that the ath component of the trigonometric polynomial expansion eN
a admits two equivalent finite-

dimensional representations. The first one is based on a matrix êa 2 CN of the Fourier coefficients of the ath component and
equation (8) with êaðkÞ ¼ êk

a. Second, the data can be entirely determined by interpolation of nodal values
eN
a ðxÞ ¼

X
k2ZN

ek
au

N
k ðxÞ; a ¼ 1; . . . ;d ð10Þ
where ea 2 RN is a matrix storing electric field values at grid points, ek
a ¼ eN

a ðxkÞ is the corresponding value at the kth node
with coordinates xk = (k1h1, . . . ,kdhd) and basis functions
uN
k ðxÞ ¼ jNj

�1
X

m2ZN

exp ip
Xd

a¼1

ma
xa

Y a
� 2ka

Na

� �( )
ð11Þ
satisfy the Dirac delta property uN
k ðxmÞ ¼ dmk with jNj ¼

Qd
a¼1Na. Both representations can be directly related to each other by
êa ¼ Fea; ea ¼ F�1êa; ð12Þ
where the Vandermonde matrices F 2 CN�N and F�1 2 CN�N
Fkm ¼ jYj�
1
2 exp �

Xd

a¼1

2pi
kama

Na

 !
; ð13Þ

ðF�1Þkm ¼ jYj
1
2jNj�1 exp

Xd

a¼1

2pi
kama

Na

 !
; ð14Þ
implement the forward and inverse Fourier transform, respectively, e.g. [9, Section 4.6].
The trigonometric collocation method is based on the projection of the Lippmann–Schwinger equation (4) to the space of

the trigonometric polynomials of the form
P

k2ZN ckuk; ck 2 C
� �

(cf. [7,2]). In view of Eq. (10), this is equivalent to the collo-
cation at grid points, with the action of C0 operator evaluated from the Fourier space expression (5) converted to the nodal
representation by (12)2. The resulting system of collocation equations reads
ðIþ BÞe ¼ e0; ð15Þ

where e 2 Rd�N and e0 2 Rd�N store the corresponding components of the solution and of the macroscopic field, respectively.
Furthermore, I is the d � d � N � N unit matrix and the non-symmetric matrix B can be expressed, for the two-dimensional
setting, in the partitioned format as
B ¼ F�1 0

0 F�1

" # b¡0
11

b¡0
12b¡0

21
b¡0

22

" #
F 0

0 F

� 	
dL11 dL12

dL21 dL22

� 	
; ð16Þ
with an obvious generalization to an arbitrary dimension. Here, b¡0
ab 2 RN�N and dLab 2 RN�N are diagonal matrices storing the

corresponding grid values, for which it holds
b¡0
ab


 �kk
¼ bC0

abðkÞ; dLkk
ab ¼ dLabðxkÞ; a; b ¼ 1; . . . ;d and k 2 ZN : ð17Þ
2.3. Iterative solution of collocation equations

It follows from Eq. (16) that the cost of the multiplication by B or by BT is driven by the forward and inverse Fourier trans-
forms, which can be performed in O(jNjlogjNj) operations by FFT techniques. This makes the resulting system (15) ideally
suited for iterative solvers.

In particular, the original Fast Fourier Transform-based Homogenization (FFTH) scheme formulated by Moulinec and Su-
quet in [1] is based on the Neumann expansion of the matrix inverse (I + B)�1, so as to yield the mth iterate in the form



1 Not
in [15,
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eðmÞ ¼
Xm

j¼0

ð�BÞje0: ð18Þ
Convergence of the series (18) was comprehensively studied in [4,8], where it was shown that the optimal rate of conver-
gence is achieved for
L0 ¼ kmin þ kmax

2
I; ð19Þ
with kmin and kmax denoting the minimum and maximum eigenvalues of L(x) on Y and I being the identity tensor.
Here, we propose to solve the non-symmetric system (15) by well-established Krylov subspace methods, in particular,

exploiting the classical Conjugate Gradient (CG) method [10] and the biconjugate gradient (BiCG) algorithm [11]. Even
though that CG algorithm is generally applicable to symmetric and positive-definite systems only, its convergence in the
one-dimensional setting has been proven by Vondřejc [12, Section 6.2]. A successful application of CG method to a general-
ized Eshelby inhomogeneity problem has also been recently reported by Novák [13] and Kanaun [14].

3. Results

To assess the performance of the conjugate gradient algorithms, we consider a model problem of the transverse electric
conduction in a square array of identical circular particles with 50% volume fraction. A uniform macroscopic field e0 = (1,0)
is imposed on the corresponding single-particle unit cell, discretized by N = (255,255) nodes1 and the phases are considered
to be isotropic with the conductivities set to L = I for the matrix phase and to L = .I for the particle.

The conductivity of the homogeneous reference medium is parameterized as
L0ðxÞ ¼ ð1�xþ .xÞI; ð20Þ
where x = 0.5 corresponds to the optimal convergence of FFTH algorithm (19). All conjugate gradient-related results have
been obtained using the implementations according to [16] and referred to as Algorithm 6.18 (CG method) and Algorithm
7.3 (BiCG scheme). Two termination criteria are considered. The first one is defined for the mth iteration as [15]
gðmÞe

� 2 ¼
P

k2ZN ðk � ĵkðmÞÞ2

k̂j0ðmÞk2
2

6 e2; ð21Þ
and provides the test of the equilibrium condition (1)2 in the Fourier space. An alternative expression, related to the standard
residual norm for iterative solvers, has been proposed by Vinogradov and Milton in [8] and admits the form
gðmÞr ¼ kL
0ðeðmþ1Þ � eðmÞÞk2

ke0k2
6 e; ð22Þ
with the additional L0 term ensuring the proportionality to (21) at convergence. From the numerical point of view, the latter
criterion is more efficient than the equilibrium variant, which requires additional operations per iteration. From the theoret-
ical point of view, its usage is justified only when supported by a convergence result for the iterative algorithm. In the oppo-
site case, the equilibrium norm appears to be more appropriate, in order to avoid spurious non-physical solutions.

3.1. Choice of reference medium and norm

Since no results for the optimal choice of the reference medium are known for (Bi)CG-based solvers, we first estimate
their sensitivity to this aspect numerically. The results appear in Fig. 1(a), plotting the relative number of iterations for
CG and BiCG solvers against the conductivity of the reference medium parameterized by x, recall Eq. (20).

As expected, both CG and BiCG solvers achieve a significant improvement over FFTH method in terms of the number of
iterations, ranging from 50% for a mildly-contrasted composite down to 2% for . = 104. Moreover, contrary to all other avail-
able methods, the number of iterations is almost independent of the choice of the reference medium. We also observe, in
agreement with results in [12, Section 6.2] for the one-dimensional setting, that CG and BiCG algorithms generate identical
sequences of iterates; the minor differences visible for x > 1 or . = 104 can be therefore attributed to accumulation of round-
off errors. These conclusions hold for both equilibrium- and residual-based norms, which appear to be roughly proportional
for the considered range of the phase contrasts (cf. Fig. 1(b)). Therefore, the residual criterion (22) will mostly be used in
what follows.

In Fig. 2, we supplement the comparison by considering the total CPU time required to achieve a convergence. The data
indicate that the cost of one iteration is governed by the matrix–vector multiplication, recall Eq. (16): the overhead of CG
scheme is about 10% with respect to FFTH method, while the application of BiCG algorithm, which involves B and BT prod-
ucts per iteration [11], is about twice as demanding. As a result, CG algorithm significantly reduces the overall computational
e that the odd number of discretization points is used to eliminate artificial high-frequency oscillations of the solution in the Fourier space, as reported
Section 2.4].
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time in the whole range of contrasts, whereas a similar effect has been reported for the candidate schemes only for . P 103

(cf. [6]).
3.2. Influence of phase contrast

As confirmed by all previous works, the phase contrast . is the critical parameter influencing the convergence of FFT-
based iterative solvers. In Fig. 3, we compare the scaling of the total number of iterations with respect to phase contrast
for CG and FFTH methods, respectively. The results clearly show that the number of iterations grows as

ffiffiffi.p instead of the
linear increase for FFTH method. This follows from error bounds
gðmÞr 6 cmgð0Þr ; cFFTH ¼ .� 1
.þ 1

; cCG ¼
ffiffiffi.p � 1ffiffiffi.p þ 1

: ð23Þ
The first estimate was proven in [4], whereas the second expression is a direct consequence of the condition number of
matrix B being proportional to . and a well-known result for the conjugate gradient method, e.g. [16, Section 6.11.3]. The
CG-based method, however, failed to converge for the infinite contrast limit. Such behavior is equivalent to the Eyre-Milton
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scheme [4]. It is, however, inferior to the Augmented Lagrangian algorithm, for which the convergence rate improves with
increasing q and the method converges even as q ?1. Nonetheless, such results are obtained for optimal, but not always
straightforward, choice of the parameters [5].
3.3. Convergence progress

The final illustration of the CG-based algorithm is provided by Fig. 4, displaying a detailed convergence behavior for both
low- and high-contrast cases. The results in Fig. 4(a) correspond well with estimates (23) for both residual and equilibrium-
based norms. Influence of a higher phase contrast is visible from Fig. 4(b), plotted in the full logarithmic scale. For FFTH
algorithm, two regimes can be clearly distinguished. In the first few iterations, the residual error rapidly decreases, but
the iterates tend to deviate from equilibrium. Then, both residuals are simultaneously reduced. For CG scheme, the increase
of the equilibrium residual appears only in the first iteration and then the method rapidly converges to the correct solution.
However, its convergence curve is irregular and the algorithm repeatedly stagnates in two consecutive iterations. Further
analysis of this phenomenon remains a subject of future work.
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4. Conclusions

In this short note, we have presented a conjugate gradient-based acceleration of the FFT-based homogenization solver
originally proposed by Moulinec and Suquet [1] and illustrated its performance on a problem of electric conduction in a peri-
odic two-phase composite with isotropic phases. On the basis of obtained results, we conjecture that:

(i) the non-symmetric system of linear equations (15), arising from discretization by the trigonometric collocation
method [2], can be solved using the standard conjugate gradient algorithm,

(ii) the convergence rate of the method is proportional to the square root of the phase contrast,
(iii) the methods fails to converge in the infinite contrast limit,
(iv) contrary to available improvements of the original FFT-solver [4,5], the cost of one iteration remains comparable to the

basic scheme and the method is insensitive to the choice of auxiliary reference medium.

The presented computational experiments provide the first step towards further improvements of the method, including
a rigorous analysis of its convergence properties, acceleration by multi-grid solvers and preconditioning and the extension to
non-linear problems.
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